Главная - Дети 6-7 дет
Тонкая структура спектральных линий. Тонкая структура спектров эпр. Изучение сверхтонкой структуры

Исследование спектра атома водорода при помощи спектральных приборов с высокой разрешающей способностью и большой дисперсией показало, что спектральные линии водорода имеют тонкую структуру, т.е. состоят из нескольких линий с очень близкими значениями длин волн. Например, головная линия серии Бальмера H  представляет собой квинтет (состоит из пяти отдельных линий) с разностью длин волн нм.

Тонкая структура спектральных линий водородоподобного атома объясняется дополнительным взаимодействием между зарядом атомного ядра и спиновым магнитным моментом электрона. Такое взаимодействие называют спин-орбитальным.

Полный момент импульса электрона складывается из орбитального и спинового моментов. Сложение этих моментов происходит по квантово-механическим законам так, что квантовое число полного момента импульса j может принимать два (
,
, если
) или одно (
, если
) значение.

С учётом спин-орбитального взаимодействия состояния атома с различными значениями j обладают различной энергией, поэтому уровни энергии с
расщепляются на два подуровня, которые называютсядублетами . Нерасщепляющиеся уровни с
и
называютсясинглетами .

Величина расщепления определяется волновым релятивистским уравнением Дирака, которое даёт поправку к энергии (5.2):

, (5.4)

где
– постоянная тонкой структуры. ЭнергияE nj спин-орбитального взаимодействия составляет примерно
часть энергии электронаE n . Такой же порядок малости имеет относительное различие компонент тонкой структуры спектральных линий. В данной лабораторной работе разрешающая способность приборов не позволяет наблюдать столь малое расщепление спектральных линий атома водорода.

3. Многоэлектронные атомы

Многоэлектронный атом состоит из ядра с зарядом Ze и окружающей ядро электронной оболочки с Z электронами (для атома ртути
). Точное нахождение волновой функции всей электронной оболочки атома невозможно из-за большого числа частицZ . Обычно для расчётов используют модель атома, в которой сохраняется представление об индивидуальном состоянии электрона в атоме. В таком подходе, получившем название одночастичного приближения , состояние отдельных электронов описывается с помощью четырех квантовых чисел n , l , m , m s . При этом, согласно принципу Паули, в одном квантовом состоянии может находиться не более одного электрона. Электроны атома с заданным значением главного квантового числа n образуют оболочку (слой). Совокупность электронов с заданными значениями квантовых чисел n и l образует подоболочку. Подоболочки обозначаются буквами: s , p , d , f , , которым отвечают значения
Максимальное число электронов в подоболочке равно
. Вs подоболочке это число равно 2, в p оболочке – 6, в d оболочке – 10, в f оболочке – 14 и т.д.

Электронной конфигурацией называют распределение электронов в атоме по одночастичным состояниям с различными n и l . Например, для атома ртути обозначение электронной конфигурации имеет вид: , где цифры над символами подоболочки обозначают число электронов в данном состоянии. Расположение электронных оболочек и подоболочек в конфигурации определяется порядком заполнения одночастичных электронных состояний. Заполнение состояний начинается с нижних уровней энергии. В атоме ртути полностью заполнены первые четыре оболочки, а пятая и шестая заполнены не полностью. В основном состоянии атома ртути два валентных электрона находятся на 6s подоболочке.

Для многоэлектронного атома полные моменты импульса полностью заполненных внутренних оболочек и подоболочек равны нулю. Поэтому полный момент импульса такого атома определяется орбитальными и спиновыми моментами внешних, валентных электронов. Валентные электроны находятся в центрально-симметричном поля ядра и электронов замкнутых оболочек, поэтому их суммарный момент импульса является сохраняющейся величиной. Для лёгких и средних атомов взаимодействие электронов, обусловленное их орбитальным и спиновым моментами, приводит к тому, что эти моменты складываются порознь, т.е. орбитальные моменты всех электронов складываются в полный орбитальный момент атома
, а спиновые моменты электронов складываются в спиновый момент атома
. В этом случае говорят, что между электронами осуществляетсяL -S связь или связь Рёссель – Саундерса.

Квантовые числа L и S орбитального и спинового моментов атома определяются общими квантово-механическими правилами сложения моментов импульсов. Например, если два валентных электрона имеют квантовые числа l 1 и l 2 , то L может принимать следующие целочисленные значения:
. Применяя аналогичное правило для спина, и учитывая, что спиновое число электрона
, получаем возможные значенияS для двух валентных электронов:
.

Уровень энергии, отвечающий определённым значениям квантовых чисел L и S , называется спектральным термом . В спектроскопии принято обозначать терм символом
, где вместо значений
ставят буквыS , P , D , F , … соответственно. Число
называетсямультиплетностью терма.

С учётом спин-орбитального взаимодействия уровень энергии, или терм, расщепляется на ряд подуровней, которым отвечают разные значения полного момента импульса атома. Такое расщепление терма называется тонким или мультиплетным . При заданных числах L и S полный момент импульса атома
определяется квантовым числомJ , которое может принимать значения: . Компоненты тонкой структуры или подуровни энергии, отвечающие заданным значениямL , S и J обозначаются символом
.

Если спиновое число двух валентных электронов атома ртути
, то единственное возможное значение
. В этом случае мультиплетность терма равна
, т.е. все уровни синглетны. Их спектральные обозначения:,,
,и т.д.

Рис. 5.3

Если
, а
, то возможны три случая:
. В этом случае мультиплетность равна
, т.е. все уровни триплетны. И, наконец, если
, то единственное значение
, а уровень этого состояния – синглетный. В соответствии с этим получаются следующие возможные уровни энергии в атоме ртути:,,,,
,
,
,
,,
и т. д.

Все перечисленные уровни энергии определяются различными допустимыми наборами квантовых состояний, в которых могут находиться валентные электроны атома ртути.

Анализ спектров излучения и поглощения ртути в ультрафиолетовой, видимой и инфракрасной областях позволил составить полную схему возможных уровней энергии и переходов между ними (рис. 5.3). На схеме указаны длины волн спектральных линий ртути в нанометрах, а также квантовое число n для каждого уровня.

На схеме отмечены значения главного квантового числа около соответствующих уровней энергии. На рис. 5.3 также указаны переходы между уровнями и длины волн спектральных линий ртути, соответствующих этим переходам. Возможные переходы определяются правилами отбора:
;
и
, причём переход из состояния
в состояние
невозможен. Из требования
следует, что разрешены переходы между уровнями одинаковой мультиплетности (синглет - синглетные и триплет-триплетные переходы). Однако, как видно из рис. 5.3, наблюдаются и запрещенные правилами отбора переходы (пять синглет- триплетных переходов). Существование запрещенных правилами отбора переходов имеет место для атомов с большими атомными номерами. При исследовании схемы уровней и переходов атомов ртути необходимо обратить внимание на следующее обстоятельство: для больших атомных номеров мультиплетное расщепление из-за спин-орбитального взаимодействия имеет большие значения. Так, триплетный уровень ртути
имеет расщепление (разность между максимальной и минимальной энергиями) порядка одного электрон-вольта, что составляет примерно одну десятую часть энергии основного состояния атома ртути. В этом смысле расщепление уровня энергии уже нельзя считать «тонким».

Исследование спектров щелочных металлов при помощи приборов с большой разрешающей силой показало, что каждая линия этих спектров является двойной (дублет). Так, например, характерная для натрия желтая линия (см. рис. 29.1) состоит из двух линий с длинами волн 5890 и 5896 А. То же относится и к другим линиям главной серии, а также к линиям других серий.

Структура спектра, отражающая расщепление линий на компоненты, называется тонкой структурой. Сложные линии, состоящие из нескольких компонент, получили название мультиплетов. Тонкая структура обнаруживается, кроме щелочных металлов, также и у других элементов, причем число компонент в мультиплете может быть равно двум (дублеты), трем (триплеты), четырем (квартеты), пяти (квинтеты) и т. д. В частном случае спектральные линии даже с учетом тонкой структуры могут быть одиночными (синглеты).

Расщепление спектральных линий, очевидно, обусловлено расщеплением энергетических уровней. Для объяснения расщепления уровней Гаудсмит и Уленбек выдвинули в 1925 г. гипотезу о том, что электрон обладает собственным моментом импульса , не связанным с движением электрона в пространстве.

Этот собственный момент был назван спином.

Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Согласно этим представлениям электрон уподоблялся волчку или веретену. Кстати, отсюда происходит и сам термин «спин»: по-английски spin означает «верчение». Однако очень скоро пришлось отказаться от подобных модельных представлений, в частности по следующей причине. Вращающийся заряженный шарик должен обладать магнитным моментом, причем отношение магнитного момента к механическому должно иметь значение

(см. формулу (56.3) 2-го тома).

Действительно, было установлено, что электрон, наряду с собственным механическим моментом, обладает также и собственным магнитным моментом Однако ряд опытных фактов, в частности сложный эффект Зеемана, свидетельствует о том, что отношение собственных магнитного и механического моментов в два раза больше, чем для орбитальных моментов:

Таким образом, представление об электроне как о вращающемся шарике оказалось несостоятельным. Спин следует считать внутренним свойством, присущим электрону, подобно тому как ему присущи заряд и масса.

Предположение о спине электрона было подтверждено большим количеством опытных фактов и должно считаться совершенно доказанным. Оказалось также, что наличие спина и все его свойства автоматически вытекают из установленного Дираком уравнения квантовой механики, удовлетворяющего требованиям теории относительности. Таким образом, выяснилось, что спин электрона является свойством одновременно квантовым и релятивистским. Спином обладают также протоны, нейтроны, фотоны и другие элементарные частицы (кроме мезонов).

Величина собственного момента импульса электрона определяется по общим законам квантовой механики (см. формулу (24.2)) так называемым спиновым квантовым числом s, равным

Проекция спина на заданное направление может принимать едантованные значения, отличающиеся друг от друга на

Чтобы найти значение собственного магнитного момента электрона, умножим на отношение (см. (31.2)):

( - магнетон Бора; см. формулу (56.7) 2-го тома). Знак минус указывает на то, что механический и магнитный моменты электрона направлены в противоположные стороны.

Проекция собственного магнитного момента электрона на заданное направление может иметь следующие значения:

(минус получается, если плюс - если

Таким образом, проекция собственного момента импульса электрона может принимать значения а собственного магнитного момента - значения . В ряд формул, в частности в выражение для энергии, входят не сами моменты, а их проекции. Поэтому принято говорить, что собственный механический момент (спин) электрона равен половине (подразумевается: в единицах ), а собственный магнитный момент равен одному магнетону Бора.

Рассмотрим теперь на примере атома натрия, как существование спина электрона может объяснить мультиплетную структуру спектра. Поскольку момент атомного остатка равен нулю, момент атома натрия равен моменту валентного электрона. Момент же электрона будет слагаться из двух моментов: орбитального обусловленного движением электрона в атоме, и спинового не связанного с движением электрона в пространстве. Результирующая этих двух моментов дает полный момент импульса валентного электрона. Сложение орбитального и спинового моментов в полный момент осуществляется по тем же квантовым законам, по которым складываются орбитальные моменты разных электронов (см. формулы (24.7) и (24.8)). Вели чина полного момента определяется квантовым числом

причем может иметь значения

где I и s - соответственно азимутальное и спиновое квантовые числа. При квантовое число имеет только одно значение; При отличном от нуля, возможны два значения} , которые соответствуют двум возможным взаимным ориентациям моментов - «параллельной» и «антипараллельной».

Теперь учтем, что с механическими моментами связаны магнитные моменты, которые взаимодействуют друг с другом подобно тому, как взаимодействуют два тока или две магнитные стрелки. Энергия этого взаимодействия (называемого спин-орбитальным взаимодействием) зависит от взаимной ориентации орбитального и собственного моментов. Следовательно, состояния с различными должны обладать различной энергией.

Таким образом, каждый терм ряда расщепляется на два, соответствующих каждый терм ряда расщепляется на термы с и т. д. Каждому терму ряда соответствует только одно значение поэтому термы ряда S не расщепляются.

Итак, каждый ряд термов, кроме S, распадается на два ряда - структура термов оказывается дублетной (двойной). Термы принято обозначать символами:

Правый нижний индекс дает значение j. Верхний левый индекс указывает мультиплетность термов. Хотя ряд S является одиночным, при символе терма также ставится 2, чтобы показать, что этот ряд принадлежит к системе термов, в целом дублетной.

С учетом тонкой структуры схема термов выглядит более сложно, о чем дают представление схемы уровней натрия (рис. 31.1) и цезия (рис. 31.2). Схему для натрия следует сравнить со схемой, изображенной на рис. 29.1. Поскольку мультиплетное расщепление термов D и F для натрия очень мало, подуровни D и F, отличающиеся значениями изображены на схеме слитно.

Для квантового числа полного момента импульса атома имеется правило отбора

Мультиплетное расщепление у цезия значительно больше, чем у натрия. На схеме цезия видно, что тонкая структура диффузной серии состоит не из двух линий, а из трех:

Возникновение этих линий пояснено дополнительно на рис. 31.3. Изображенный пунктиром переход запрещен правилом отбора (31.7). В нижней части схемы показано, как выглядит сам мультиплет.

Толщина линий на схеме примерно соответствует интенсивности спектральных линий. Совокупность получающихся линий выглядит как дублет, у которого одна из компонент в свою очередь оказывается двойной.

Такая группа линий называется не триплетом, а сложным дублетом, так как она возникает в результате комбинации дублетных термов.

Заметим, что в связи с существованием спина электрона естественно возникает вопрос о том, что и у водородного атома уровни с должны быть двойными, а спектральные линии - дублетными.

Тонкая структура водородного спектра действительно была обнаружена экспериментально.

Обусловленное спином расщепление энергетических уровней является релятивистским эффектом. Релятивистская квантовая теория дает для расстояния между уровнями тонкой структуры водородного атома значение раз меньше, чем расстояние между основными уровнями.

Постоянная тонкой структуры принадлежит к числу фундаментальных констант природы. Ее смысл становится очевидным при переходе к так называемой естественной системе единиц, применяемой в квантовой электродинамике. В этой системе в качестве единицы массы принимается масса электрона те, в качестве единицы длины - комптоновская длина волны электрона (см. § 11), в качестве единицы энергии - энергия покоя электрона и т. д. Вычислим в этих единицах электрическую энергию взаимодействия двух электронов, находящихся на расстоянии друг от друга. Для этого нужно выражение разделить на В результате получится безразмерная величина, равная

(см. формулу (31.9)). Если бы мы заряд электрона q выражали в естественных единицах, то формула для энергии взаимодействия имела бы вид

Отсюда следует, что а представляет собой квадрат элементарного заряда, выраженного в естественных единицах.

Согласно (31.10) постоянная тонкой структуры характеризует энергию взаимодействия двух электронов. Иначе можно сказать, что а определяет, как сильно электрон связан с электромагнитным полем. По этой причине постоянную а называют константой связи электрона с электромагнитным полем.

В выражение (31.10) для а масса электрона не входит. Следовательно, а является константой связи с электромагнитным полем для любой элементарной частицы, имеющей заряд .

Дальнейшее исследование атомных спектров показало, что многие спектральные линии имеют два близких компонента. Так, еще в 1887 г. А. Майкельсон обнаружил расщепление - линии серии Бальмера в водороде, порождаемой переходом

Она оказалась состоящей из двух линий со средней длиной волны 6 563 Å.

Рис. 5.9. Альберт Абрахам Майкельсон 1852–1931

Разность длин волн равна 0.14 Å (то есть относительная величина расщепления порядка 10 – 5 ). Были обнаружены и линии, расщепленные на 3 , 4 и более компонентов. Расщепление линий, как мы теперь понимаем, означает расщепление энергетических уровней атома: у них появляется, как говорят, тонкая структура. Значит, существует неучтенное взаимодействие. Мы говорили, что расщепление линий возникает, например, когда наложенное внешнее поле нарушает симметрию системы. А здесь неучтенное взаимодействие проявляется в отсутствие внешних полей, то есть оно должно быть связано с какими-то внутренними свойствами атома.

Оказалось, что это действительно проявление внутренних свойств, но не атома в целом, а электрона. В 1925 г. С. Гаудсмит и Дж. Уленбек выдвинули гипотезу спина электрона : они предположили существование у электрона собственного момента импульса, не связанного с орбитальным движением. Сначала спин представляли себе как верчение (англ. spin ) электрона вокруг собственной оси (аналог суточного вращения Земли). Потом осознали, что «верчение» нельзя понимать буквально: численные оценки давали линейную скорость верчения, превышающую скорость света в вакууме.

Рис. 5.10. Сэмюэл Абрахам Гаудсмит 1902–1978

Рис. 5.11. Джо́рдж Ю́джин Уленбе́к 1900–1988

Его существование остается загадкой, если находиться только в рамках квантовой механики Гейзенберга - Шредингера. Естественное объяснение спин получил только в релятивистской квантовой теории П. Дирака , соединившей теорию относительности с квантовой механикой.

Рис. 5.12. Поль Адриен Морис Дира́к, 1902–1984

Из опытов следовало, что электрону надо приписать спиновое квантовое число s = 1/2 , имеющее те же свойства (см. формулу (5.5)), что и квантовое число l . Принято для краткости спиновое квантовое число называть спином . В дальнейшем мы тоже будем использовать эту, общепринятую терминологию.

Соответственно, существует единственное собственное значение оператора квадрата спина

а проекция спина на какую-то ось (пробегая через единицу ħ все значения от максимального до минимального) записывается в виде

где принимает лишь два значения

Число называют магнитным спиновым квантовым числом .

Откуда же взялось расщепление спектральных линий? Попытаемся понять это с помощью полуклассических рассуждений. В классической физике любое вращение электрического заряда создает магнитное поле. Вращающийся по орбите радиусом R классический электрон можно представить как виток с током силой l , охватывающий площадь , то есть как магнитный диполь с магнитным моментом


Рис. 5.13. Модель спина и магнитного момента электрона в рамках классической физики

Классическая оценка: электрон на орбите радиусом R и скоростью v имеет период обращения

Возьмем какую-нибудь точку на орбите. За время T через нее проходит заряд е, то есть сила тока по определению равна

Кроме того, электрон имеет орбитальный момент

так что ток можно выразить через орбитальный момент, исключив скорость электрона:

Тогда орбитальный магнитный момент, создаваемый электроном, равен

Рис. 5.14. Классическая модель электрона на круговой орбите

Заменим теперь в соответствии с правилами квантования

и получим выражение для орбитального магнитного момента, которое может быть выведено и более строго:

Отсюда следуют выводы:

· Естественная единица для магнитных моментов в микромире - так называемый магнетон Бора

· Проекция магнитного момента на любую ось всегда должна быть целым кратным магнетона Бора:

(Теперь понятно, почему квантовое число n названо магнитным.)

· Отношение орбитального магнитного момента электрона к его орбитальному моменту импульса, называемое гиромагнитным отношением , равно

Эксперименты показали, что спин электрона обладает двойным магнетизмом: собственный магнитный момент электрона, связанный со спином, равен

то есть гиромагнитное отношение для него оказалось в два раза большим . Это - лишнее доказательство того, что электрон нельзя представлять себе как заряженный шарик, вращающийся вокруг собственной оси: в таком случае должно было бы получиться обычное гиромагнитное отношение. Для проекции собственного магнитного момента имеем

и поскольку

В итоге для проекции спинового магнитного момента снова получились целые кратные магнетона Бора, как и для орбитального движения. По какой-то причине природа предпочитает иметь дело с целым магнетоном Бора, а не с его частями. Поэтому полуцелое значение собственного момента количества движения она компенсирует двойным гиромагнитным отношением.

Рис. 5.15. Иллюстрация орбитального и спинового моментов электрона

Теперь можно понять, почему наличие у электрона собственного магнитного момента приводит к появлению какого-то неучтенного до сих пор взаимодействия. Для этого опять перейдем на полуклассический язык. Орбитальное движение электрона создает магнитное поле, которое действует на собственный магнитный момент электрона. Подобным образом магнитное поле Земли воздействует на стрелку компаса. Энергия этого взаимодействия сдвигает энергетические уровни атома, причем величина сдвига зависит, вообще говоря, от спинового и орбитального моментов количества движения.

Важный вывод:

Пример 1. Оценим расщепление уровней энергии вследствие взаимодействия спинового и орбитального магнитного моментов электрона в атоме водорода.

Круговой виток радиусом R с током силой I порождает в центре магнитное поле

В этой главе было показано, что вращающийся по орбите электрон можно представить как виток с током

Здесь для оценки мы положили

Тогда получаем для магнитного поля, создаваемого орбитальным движением электрона в атоме, величину порядка

Энергия взаимодействия собственного магнитного момента электрона с этим магнитным полем равна по порядку величины

Для оценки положим R равным боровскому радиусу первой орбиты . Подставляя сюда выражения для и и учитывая, что

получаем оценку сдвига энергетических уровней

где - введенная выше (см. (3.3)) постоянная тонкой структуры. Энергия первого уровня атома водорода, как известно, равна

так что (3.13) можно переписать как

Поскольку

a E = 13 6эВ , то

а относительный сдвиг уровней

что соответствует экспериментальным данным.

Это и есть оценка (не расчет) искомого расщепления уровней. В сущности, расщепление уровней - это релятивистский эффект: по Бору скорость электрона на первой орбите

Поэтому не удивительно, что до конца свойства спина могут быть поняты только в релятивистской квантовой теории. Мы не ставим себе такую задачу, но просто будем учитывать наличие у электрона этого удивительного свойства.

Экспериментальное доказательство существования спина электрона было дано в опыте Штерна - Герлаха в 1922 г. Идея опыта состоит в том, что в магнитном поле, неоднородном по оси z, на электроны действует смещающая сила, направленная вдоль поля. Происхождение этой силы проще уяснить сначала на примере электрического диполя, помещенного в электрическое поле. Электрический диполь представляет собой пару противоположных зарядов , расположенных на малом расстоянии l друг от друга. Величина электрического дипольного момента определяется как

причем вектор l считается направленным от отрицательного заряда к положительному.

Пусть положительный заряд находится в точке r, а отрицательный - в точке , так что

Пусть диполь помещен в электрическое поле с напряженностью . Найдем силу, действующую на диполь. На положительный заряд действует сила

на отрицательный -

Результирующая сила будет

Так как расстояние между зарядами мало, то поле в точке расположения отрицательного заряда можно приближенно записать как

Подставляя это разложение в выражение для силы F , находим

Если поле однородно (Е не зависит от ), то на заряды диполя действуют равные и противоположно направленные силы и результирующая сила равна нулю, как и следует из уравнения (5.14). Как известно, такая пара сил не смещает диполь (который в целом электрически нейтрален), но лишь поворачивает его вдоль поля (магнитный аналог - стрелка компаса). В неоднородном же поле результирующая сила отлична от нуля. В частном случае, когда поле зависит только от координаты z, в уравнении (5.14) отлична от нуля лишь производная по z

где - проекция электрического момента на ось z. Неоднородное поле стремится втянуть диполь в область, где оно сильнее.

Магнитных зарядов не существует, но магнитный диполь реализуется витком с током, и его свойства аналогичны свойствам электрического диполя. Поэтому в формуле (5.15) надо заменить электрическое поле на магнитное, электрический момент - на магнитный и написать для силы, действующей на электрон в опыте Штерна - Герлаха, аналогичное выражение

Схема опыта: пучок атомов пролетает сквозь неоднородное магнитное поле, направленное поперечно к скорости атомов. Сила, действующая на магнитные моменты атомов, отклоняет их. Соответственно возможным значениям проекции магнитного момента на направление поля первоначальный пучок расщепляется на несколько пучков. Если полный магнитный момент атома определяется только спином электрона, то первоначальный пучок расщепится на два. Для многоэлектронных атомов расщепленных пучков может быть больше. Для своего эксперимента Штерн и Герлах использовали серебро, которое испарялось в электрической печке. Численные значения расщепления составляли доли миллиметра. Авторы подчеркнули в своих выводах, что неотклоненных атомов не было зарегистрировано. Ниже мы увидим, что это - специфика опытов с элементами первой группы.

Рис. 5.16. Схема опыта Штерна и Герлаха

Главный результат опытов Штерна и Герлаха - прямое экспериментальное доказательство квантования направления магнитного момента атомов. Согласно классической физике, первоначальный пучок должен не расщепиться, а размазаться в соответствии с произвольностью проекции магнитного момента на направление магнитного поля. Соответственно, на экране за прибором вместо двух раздельных линий, оставленных атомами серебра, должна была бы наблюдаться размытая полоска.

Рис. 5.17. Отто Штерн, 1888–1969

Рис. 5.18. Ва́льтер Ге́рлах, 1889–1979

Пример 2. Узкий пучок атомов со скоростью и массой n пропускается через поперечное неоднородное магнитное поле, в котором на них действует сила (рис. 5.19). Протяженность области поля , расстояние от магнита до экрана . Определим угол отклонения следа пучка атомов на экране от его положения при выключенном магнитном поле.

Как указывалось в предыдущем параграфе, наличие спина у электрона приводит к расщеплению энергий состояний с опреленным значением l (т. е. момента импульса, связанного с орбитальным движением электрона) за счет спин-орбитального взаимодействия. Его происхождение качествено может быть легко понято, если иметь в виду, что собственный магнитный момент электрона, связанный с его спином, взаимодействует с магнитным полем орбитального тока. Можно рассуждать по-иному: в системе координат электрона, движущегося в кулоновском поле ядра, возникает магнитное поле, с которым взаимодействует собственный магнитный момент электрона. Энергия такого взаимодействия зависит от ориентации магнитного момента относительно направления поля, т. е. от его проекции на это направление. А так как проекция магнитного момента (вместе с проекцией спина) может принимать два значения, то для любого l мы получаем расщепление на два состояния, соответствующие двум возможным значениям квантового числа полного момента j = l±1/2. Исключение составляет лишь состояние с l = 0, для которого j принимает только одно значение: j = 1/2. Таким образом,

наличие спина у электрона приводит к возникновению поправки к полной энергии атома водорода (см. (5.44)), зависящей от квантового числа j. Эта поправка невелика, она такого же порядка, что и релятивистская поправка.

Последовательный квантовомеханический расчет, учитывающий оба типа поправок, дает:

где m- приведенная масса электрона и протона,

α = е 2 /(4πε 0 ћc) = 1/137

Уже встречавшаяся нам постоянная тонкой структуры,

определяющая величину расщепления уровней по квантовому числу j. Само расщепление, описываемое (6.54), носит название тонкой структуры спектра атома водорода. Подчеркнем еще раз, что поправка за счет спин-орбитального взаимодействия мала: как следует из (6.54), ее отношение к основному члену порядка α 2 , т. е. порядка (1/137) 2 .

Как же выглядит спектр атома водорода с учетом тонкой структуры?

Для классификации электронных состояний обычно применяют спектроскопические обозначения, записываемые в виде nlj, где n - главное квантовое число, l - орбитальное квантовое число в буквенном обозначении (см. §. 6.2), j - квантовое число полного момента импульса или, как его часто называют, полного углового момента.



Основное состояние (главное квантовое число n = 1, а орбитальное l = 0) не расщепляется (а лишь слегка смещается вниз по энергии), поскольку j принимает только одно значение, равное 1/2. Следующее состояние, для которого n = 2, а l может принимать значения 0 и 1, расщепляется по энергии на два, т. к. здесь j может быть равно 1/2 и 3/2. При этом значение j = 1/2 получается в результате сложения спина электрона как с орбитальным моментом l= 0 (состояние 2s 1/2) так и с l = 1 (состояние 2р 1/2), в то время как j = 3/2 может получиться лишь от сложения с l = 1 (состояние 2p 3/2). Уровень энергии, соответствующий n = 3, расщепляется на три соответственно трем значениям, которые может принимать квантовое число j, а именно: 1/2 (состояния 3s 1/2 и 3p 1/2), 3/2 (3р 3/2 и 3d 3/2) и 5/2 (состояние

Согласно (6.54) уровни тонкой структуры атома водорода, соответствующие определенному значению главного квантового числа, двукратно вырождены по l (за исключением уровня с максимальным значением j). Например, состояния 2s 1/2 и 2р 1/2 должны иметь одинаковую энергию. На самом деле их энергии различаются: энергия состояния 2s 1/2 располагается несколько выше, чем энергия 2р 1/2 (хотя и ниже энергии уровня 2p 3/2). Это расщепление уровней, составляющее порядка 1/10 тонкого расщепления, получило название лэмбовского сдвига по имени У. Лэмба, окончательно

установившего в 1947 г. его существование. Причиной лэмбовского сдвига является взаимодействие электрона с флуктуационным электромагнитным полем, или, как принято говорить в квантовой электродинамике, с флуктуациями вакуума. Рассмотрение данного эффекта выходит за рамки нашего курса. Можно лишь отметить, что современная квантовая электродинамика дает превосходное количественное описание такого расщепления.

Отметим, что с учетом спина электрона появляется новая степень свободы, а следовательно, и новое квантовое число m s (ћm s - проекция спина на выделенное направление), принимающее значения ±1/2. Таким образом, состояние электрона в атоме водорода можно характеризовать четырьмя квантовыми числами: n, l, m l , m s . Однако, поскольку орбитальный момент и спин складываются в полный момент (от которого зависит энергия состояния), то состояние атома водорода удобно описывать с помощью другого набора квантовых чисел, а именно: n, l, j, m j , где m j - квантовое число проекции полного момента импульса, пробегающее 2j + 1 значений (- j, -j + 1, ... , j - 1, j). Энергия состояния зависит от n и j, зависимость от l появляется при учете лэмбовского сдвига. Состояния вырождены по m j .

Физический смысл этого вырождения состоит в следующем: при отсутствии физически выделенного направления все ориентации момента импульса в пространстве равноправны.

Коротко остановимся на правилах отбора для электромагнитных переходов (т. е. переходов из одного состояния в другое с испусканием или поглощением фотона). Для систем размеров порядка атомных наиболее вероятным является дипольное электромагнитное излучение и поглощение, которое, как показывает расчет, может происходить лишь при определенных соотношениях между квантовыми числами начального и конечного состояний, а именно: реализуются только такие лектромагнитные переходы, при которых изменения квантовых чисел принимают следующие значения:

Δj = 0, ±1; Δm j = 0, ±1; Δl = ±1; Δm l = 0, ±1; Δm s = 0. (6.55)

Правила отбора (6.55) справедливы не только для водорода, но и для дородоподобных атомов. Отметим, что для многоэлектронных атомов (отличных от водородоподобных) также можно получить правила отбора, для которых (6.55) являются частным случаем. Они будут подробнее рассмотрены в дальнейшем.

ПРИНЦИП ЗАПРЕТА ПАУЛИ. ПЕРИОДИЧЕСКАЯ ТАБЛИЦА

ЭЛЕМЕНТОВ МЕНДЕЛЕЕВА

Принцип Паули

Химикам давно было известно, что свойства многих элементов подобны.

Например, Не, Ne, Ar, Kr, Xe представляют собой благородные газы и весьма «неохотно» участвуют в химических реакциях, a Li, Na, К, Rb, Cs являются щелочными металлами с одной валентностью. Сходными свойствами обладают галогены F, C1, Вг, I. Число подобных примеров можно увеличить. Немногим более ста лет назад, в 1869 г, Д.И. Менделеев обнаружил, что отмеченное подобие не случайно, а связано с определенной периодичностью в свойствах химических элементов. По мере увеличения атомного веса такие свойства меняются «циклически» - через некоторое время они повторяются.

К своим результатам Менделеев пришел чисто эмпирически на основе изучения большого экспериментального материала, но вопрос о том, чем обусловлена найденная закономерность, оставался открытым. Как уже указывалось, первый шаг в этом направлении был сделан в лаборатории Резерфорда во втором десятилетии XX в. Было выяснено, что периодичность элементов связана не с их атомным весом, как думал Менделеев, а с величиной заряда ядра, равная числу атомных электронов. Менделеев был прав постольку, поскольку атомный вес стабильных изотопов для каждого химического элемента монотонно возрастает с увеличением заряда ядра и числа электронов. Поэтому почти безразлично, как располагать элементы - по числу электронов или по атомному весу.

Следующим этапом явилась работа Н. Бора, опубликованная в 1923 г. Бор полагал, что электроны в атоме обращаются вокруг центрального ядра по замкнутым орбитам. Форма каждой орбиты и ее удаление от ядра характеризуются орбитальным квантовым числом /, определяющим угловой момент электрона и главным квантовым числом п. Химические свойства атома в основном зависят лишь от распределения электронов на орбитах с наибольшим значением главного квантового числа п. Такие электроны более других

удалены от ядра и потому связаны с ним менее прочно, они гораздо легче отвечают на внешние возмущения, чем электроны на «внутренних» орбитах.

Периодичность, открытая Менделеевым, связана с тем, что определенная совокупность электронных орбит образует «замкнутую оболочку», представляющую собой сферически симметричное и весьма устойчивое в химическом плане образование. Атомы с целиком заполненными оболочками - инертные газы - очень слабо реагируют на внешние возмущения, поскольку их потенциал ионизации существенно больше, чем у остальных элементов.

В других атомах эти заполненные оболочки эффективно уменьшают, как говорят, экранируют, положительный заряд центрального ядра. В химических реакциях участвуют только электроны, находящиеся на еще незаполненной оболочке. Свойства атомов с одинаковым числом таких электронов оказываются подобными. Так, например, все атомы с одним электроном сверх заполненной оболочки - щелочные металлы - одновалентны. Атомы с двумя «лишними» электронами - щелочноземельные металлы Be, Mg, Ca, Sr,

Ва - двухвалентны и т. д.

Из таблицы Менделеева видно, что в атомах благородных газов Не, Ne, Ar, Кг, Хе, Rn имеется соответственно 2, 10, 18, 36, 54, 86 электронов. Каждый такой атом отличается от предыдущего заполнением новой оболочки. Отсюда легко найти количество электронов в замкнутых оболочках: оно равно разностям чисел электронов в соседних инертных газах, т. е. 2, 8, 8, 18, 18, 32. Ридберг заметил, что этот ряд чисел описывается простой формулой

2N 2 , где N - целое число, равное по очереди 1, 2, 3, 4. Такая закономерность, как мы убедимся, является весьма знаменательной. Что же касается повторяющихся в этой последовательности чисел 8 и 18, то это связано, как мы увидим в дальнейшем, с порядком заполнения состояний в атомах.

В развитом Бором представлении об оболочечном строении атома было одно нечеткое место. Надо было делать специальное предположение, - на низших орбитах атома может находиться лишь ограниченное число электронов.

Такое положение существовало до тех пор, пока в январе 1925 г. В. Паули не сформулировал принцип запрета, носящий его имя. В нашем конкретном случае он означает, что в атоме не может существовать двух или больше эквивалентных электронов, т. е. электронов, для которых значения всех квантовых чисел одинаковы. Если в атоме находится электрон в состоянии, характеризуемом некоторым набором значений квантовых чисел, то это состояние «занято».

В квантовой механике одинаковые частицы рассматриваются полностью тождественными. Что это означает? В классической механике мы можем пометить частицы. Например, при упругом ударе одного биллиардного шара по другому можно указать, какой из шаров после соударения покатился вправо, а какой влево. В квантовой механике это в принципе невозможно из- за отсутствия траекторий у частиц и перекрытия их волновых функций в области, где происходит столкновение. Одинаковые частицы теряют свою индивидуальность, что отражается введением так называемого принципа

тождественности частиц, согласно которому все частицы одного сорта абсолютно неразличимы; возможность «пометить» их означала бы сделать их разными, что невозможно.

Принцип тождественности частиц на языке волновых функций, описывающих в квантовой механике их поведение, означает, что волновые функции системы частиц, получающиеся друг из друга перестановкой пар одинаковых частиц, могут отличаться только несущественным множителем

где f - вещественное число. Добавление этого множителя не меняет ни плотности вероятности |ψ| 2 обнаружения частиц, ни средних значений физических величин. Если сделать перестановку частицы еще раз, то получится функция, отличающаяся от исходной множителем е 2 if . Так как при этом система

возвращается в исходное состояние, то

Следовательно,

перестановка пары частиц местами либо оставляет волновую функцию неизменной, либо меняет ее знак. И поскольку состояние частицы характеризуется как ее положением в координатном пространстве, так и ориентацией ее спина, то в первом случае волновая функция является симметричной функцией координат и проекций спинов частиц, а во втором -антисимметричной.

Как показывает опыт, симметрия или антисимметрия волновой функции зависит от спина частиц. Частицы с полуцелым спином, в том числе электроны, протоны, нейтроны, описываются только антисимметричными волновыми функциями, они подчиняются статистике Ферми-Дирака и потому называются фермионами. Частицы с целым спином - фотоны, мезоны и др. - описываются только симметричными волновыми функциями, они подчиняются статистике Бозе-Эйнштейна и называются бозонами. Как показал Паули, этот опытный факт может быть обоснован в рамках квантовой теории поля.

Антисимметрия волновых функций одинаковых частиц с полуцелым спином - фермионов - приводит к особенно простым и наглядным следствиям в приближении невзаимодействующих частиц. Если пренебречь их взаимодействием друг с другом, то каждую частицу системы можно считать находящейся в определенном состоянии и волновую функцию всей системы представить в виде произведения волновых функций отдельных частиц, а полную энергию Е системы полагать равной сумме энергий частиц системы.

Рассмотрим для простоты систему из двух частиц. В этом случае энергия

Е = Е 1 + Е 2 ,

где Е 1 - энергия первой частицы в состоянии, описываемом волновой функцией

ψ α (r 1 ,s z 1), a

E2 - энергия второй частицы в состоянии

ψ β (r 2 ,s z 2).

Здесь r 1 , г 2 - координаты первой и второй частиц, а

Проекции их спинов на ось z. Решением уравнения Шредингера

для такой системы будет произведение

ψ 1 = ψ α (r 1 ,s z1) ψ β (r 2 ,s z2), (7.1)

а если под цифрами 1 и 2 понимать совокупность всех переменных, от которых зависят волновые функции первой и второй частиц, то можно переписать его в виде

ψ 1 (1,2) = ψ α (1) ψ β (2). (7.2)

Такая запись волновой функции системы страдает тем недостатком, что мы, как это было в классике, «пометили» частицы, т. е. указали, какая их них номер 1, а какая номер 2. Ясно, что в случае одинаковых частиц решение уравнения Шредингера с той же энергией Е может также иметь вид

ψ 11 (1,2) = ψ α (1) ψ β (2). (7.3)

Теперь вторая частица находится в состоянии ψ α с энергией Е 1 , а первая - в

состоянии ψ β с энергией Е 2 . Таким образом, имеется двукратное вырождение, связанное с симметрией задачи по отношению к перестановке частиц местами.

Рассмотрим, как правильно записать волновую функцию всей системы.

Если система может находиться в двух разных состояниях, имеющих одну

и ту же энергию и описываемых волновыми функциями ψ 1 и ψ 2 , то согласно

принципу суперпозиции, любая их линейная комбинация

ψ = c 1 ψ 1 + с 2 ψ 2 (7.4)

(где c 1 , с 2 - произвольные числа) будет также решением уравнения Шредингера. Поскольку волновая функция системы должна быть либо симметричной, либо антисимметричной, то или с 1 = c 2 или с 1 = - c 2 . Нормированная на единицу симметричная функция при α /= β имеет вид

а антисимметричная функция

1/√2 - нормировочный множитель). Полученные формулы легко обобщить на случай систем из любого числа частиц.

Из формулы G.6), описывающей волновую функцию системы невзаимодействующих фермионов, следует крайне интересный и принципиальный для их поведения результат. Если бы две частицы оказались в одном и том же состоянии (ψ α = ψ β , т. е. частицы находятся в одном и том же месте пространства и в одном и том же спиновом состоянии), то волновая функция (7.6) обратилась бы в нуль. Это означает, что в системе одинаковых частиц с полуцелым спином две (или более) частицы не могут одновременно находиться в одном и том же состоянии. Последнее утверждение и называется принципом исключения (запрета) Паули или просто - принципом Паули. В общем случае для систем одинаковых взаимодействующих частиц с полуцелым спином принципом Паули часто называют требование антисимметрии волновых функций.

Принцип запрета Паули делает понятной оболочечную структуру атома.

Если все состояния на низших орбитах уже заполнены электронами, то новой частице не остается ничего другого, как занять свободное место на более высокой орбите. Более того, этот принцип позволяет понять правило Ридберга для числа электронов в заполненной оболочке атома. При заданном значении главного квантового числа п полное количество всех допустимых значений орбитального числа l и магнитного квантового числа m l равно n 2 .

Каждое состояние электрона в атоме, однако, характеризуется не только величинами n, l, m l , но и значением четвертого квантового числа - спинового, которое обозначается m s . Последнее двузначно: оно принимает значения m s = 1/2 либо m s = -1/2. Поэтому полное число состояний электрона при заданном числе п и произвольных l, m l m s равно 2n 2 . Полученный результат в точности совпадает с выражением Ридберга для числа электронов в заполненной атомной оболочке, если положить N = n.

Таблица Менделеева

В настоящем параграфе мы кратко рассмотрим, как описываются состояния сложных атомов. Для этого нам понадобится правило сложения моментов, о котором шла речь раньше.

Чтобы описать структуру сложного атома, надо знать состояния всех его электронов. Опыт показывает, что в легких и средних атомах орбитальные моменты отдельных электронов складываются в суммарный орбитальный момент

а спиновые - в спиновый:

и полный момент равен

J = L + S. (7.9)

В этих случаях говорят, что имеет место LS-связъ или рассел-саундеровская связь. В тяжелых атомах осуществляется так называемая jj-связь, когда полный момент равен сумме полных моментов отдельных электронов, т. е.

Константами движения являются не только полный момент J, но и абсолютные значения L и S и их проекции на вектор J .

Состояния атомов обозначаются аналогично тому, как это делается для отдельных электронов, но только большими буквами: состояния с L = 0, 1, 2, 3, ... обозначаются соответственно буквами S, P, D, F, ... Справа внизу указывается значение квантового числа J, а слева вверху - величина 2S +1; если S < L, то эта величина определяет мультиплетность состояния, т. е. число состояний с одинаковыми L и S, но разными J. Например, если атом углерода находится в состоянии 3 P 0 , то это означает, что L = 1, S=1,

Состояние отдельного электрона в атоме определяется квантовыми числами n, l, m l , m s . Зададим некоторое орбитальное число l и рассмотрим, скольким состояниям оно соответствует. При заданном l возможно 2l +1 разных значений m l , но каждому m l соответствуют два состояния с m s = ±1/2, т. е. всего 2(2l + 1) состояний с разными m l и m s . Таким образом, при любом значении квантового числа n в атоме может быть в

s-состоянии - 2 электрона,

p-состоянии - 6 электронов,

d-состоянии - 10 электронов и т. д.

Говорят, что совокупность электронов, имеющих одинаковые n и l, образует оболочку атома. Согласно этой терминологии говорят об s-оболочках атомов, p-оболочках и т. д. Термин «оболочка» применяется также в смысле совокупности всех электронов, окружающих атомное ядро. Разумеется, при данном п значения квантового числа / не могут превышать n - 1 (см. гл. 4).

Всего в этом случае может быть 2n 2 состояний, т. к. n = n r +l, 0 < l< n - 1, и

все эти состояния образуют электронную оболочку атома с главным квантовым числом п. Оболочки, как и электронное состояние атома, обозначаются большими латинскими буквами:

n = 1 К-слой l = 0 (s-оболочка),

n= 2 L-слой l = 0, 1 (s-, или p - оболочка),

n = 3 М-слой l = 0, 1, 2, (s-, p-, d-оболочка) и т. д.

Рассмотрим теперь, как последовательно заполняется таблица Менделеева. Созданная на чисто эмпирических правилах, исходя из химических свойств элементов и их подобия, периодичность свойств элементов нашла свое естественное обоснование лишь на основе квантовой механики. Впервые объяснение периодической таблицы Менделеева с точки зрения квантовой механики было дано Н. Бором.

В табл. 7.1 приведены квантовые характеристики атомов вплоть до аргона. Здесь использовано стандартное обозначение электронных конфигураций атомов: в скобках стоит спектроскопическое обозначение электронного уровня nl j , а вверху - число электронов, находящихся на этом уровне.

Таблица 7.1. Электронные состояния легких атомов

Таблица показывает, что до бора у всех элементов (Не, Li, Be) полностью заполнен К-слой, а у L-слоя заполнена 2s-оболочка. У более тяжелых элементов (от бора до неона) остовом служит электронная конфигурация (ls 1/2) 2 (2s 1/2) 2 . В боре начинается заполнение p-состояний, в которых проекция спина может быть ±1/2, а проекция орбитального момента m l = 0, ±1.

Возникает естественный вопрос о том, с какими значениями m l и m s электроны будут последовательно заполнять р-оболочку? Здесь вступает в игру правило Хунда, согласно которому наименьшая энергия соответствует состоянию с максимальным суммарным значением S. При этом J = |L - S|,

если заполнено не более половины оболочки, и J = L + S в остальных случаях. Последнее иллюстрируется табл. 7.2.

Таблица 7.2. Квантовые характеристики электронов у атомов от бора до неона

Теперь надо объяснить, почему в таблице Менделеева наблюдается периодичность химических свойств элементов и чем выделены благородные газы.

Благородными называются газы химически почти полностью инертные, их потенциал ионизации - энергия отрыва одного электрона - оказывается наибольшим, как это отчетливо видно из рис. 7.1.

С квантовой точки зрения инертные газы - это элементы, у которых целиком заполнена р-оболочка; им соответствует состояние с S = 0, L = 0, J = 0.

Дело в том, что электроны s-оболочки расположены близко к ядру, они не являются внешними, а вот р-оболочка - внешняя и ее заполнение приводит к инертности элемента. При заполненной р-оболочки после неона электроны опять вначале заполняют 3s-состояние, от чего и возникает периодичность химических свойств.

Правда, с порядком заполнения электронных оболочек у более тяжелых атомов все обстоит далеко не так просто, поскольку с ростом числа электронов в атоме существенную роль начинает играть экранирование поля ядра внутренними электронами,

Pис. 7.1.Для благородных газов, химически почти полностью инертных, потенциал ионизации - энергия отрыва одного электрона - оказывается наибольшим, как это отчетливо видно из рис.

и электрическое поле, в котором находятся внешние электроны, заметно отличается от кулоновского. В результате порядок заполнения (от s-k p-, a затем к d- и f-оболочкам) начинает нарушаться уже после Аr. Экранирование приводит к тому, что в d- и f-состояниях электроны находятся эффективно ближе к ядру, чем в s- и p-состояниях.

Поэтому именно s- и p-электроны (а не d- и f-электроны) определяют химические свойства элемента. Например, заполнение 4f-состояний у редкоземельных элементов практически не меняет их химических свойств. А что касается g-состояний (l = 4), которые должны были появляться в оболочке с главным квантовым числом n = 5, то из-за упомянутого эффекта экранирования их заполнение становится энергетически невыгодным, и в реально существующих атомах они вообще не заполняются.

Атомные номера инертных элементов иногда называют магическими числами, поскольку на первый взгляд кажется, что в их последовательности не наблюдается никакой закономерности. Однако они простое следствие товомеханических закономерностей заполнения электронных состояний.

Действительно, инертными являются элементы с порядковыми номерами

2, 10, 18, 36, 54, 86, ... У гелия два электрона в ls-состоянии полностью

заполняют K-слой, у неона добавлются еще 2 электрона в 2s-состоянии и 6

в 2р - итого 10 электронов, у аргона - еще 8 электронов в состояниях 3s,

3р и т. д., таким образом магические числа соответствуют, как указывалось

выше, заполнению очередной р-оболочки - 2p, 3р, 4p, 5р.

АТОМ В МАГНИТНОМ ПОЛЕ

Спин фотона

Обсудим теперь более подробно вопрос об излучении, возникающем при

переходах атома из возбужденного состояния в основное либо в одно из нижележащих возбужденных состояний. Для этого необходимо прежде всего разобрать вопрос о собственном моменте импульса фотона, т. е. его спине.

Из оптики известно, что световые волны являются поперечными и могут иметь различную поляризацию. В качестве основных поляризационных состояний обычно рассматривают две взаимно перпендикулярные линейные поляризации. В квантовой механике за исходные поляризации удобнее выбирать не линейные, а циркулярные, т. е. соответствующие вращению векторов электрического и магнитного полей световой волны по или против часовой стрелки. Вектор момента импульса электромагнитного излучения

направлен при этом по направлению (у правовращающегося) или против направления (у левовращающегося) движения фотона. Переходя на язык квантовой механики, мы должны сказать, что у фотона есть спин, причем проекция спина на направление движения может принимать два значения -плюс или минус единицу. Существование только двух возможных проекций спина, казалось бы, означает, что он равен 1/2, поскольку такое значение спина обеспечивает, согласно правилам квантования, необходимое число

проекций на заданную ось 2s + 1 = 2. Однако подобное заключение полностью противоречит опыту, ибо в таком случае фотоны были бы фермионами.

Тогда, в частности, при испускании фотона атомом полный угловой момент последнего мог бы меняться на 1/2, чего никогда не наблюдается. Кроме того, при этом фотон подчинялся бы принципу запрета Паули и никаких электромагнитных волн быть не могло - в таком случае максимальная передаваемая передатчиком энергия была бы равна ћω. Следовательно, спин фотона должен выражаться целым числом.

Указанные необычные свойства фотона обусловлены равенством нулю его массы. Отличие безмассовой частицы от массовой заключается в том, что для первой невозможно найти такую систему отсчета, в которой она покоится, поскольку она движется со скоростью света, т. е. нельзя определить спин как момент импульса частицы в системе отсчета, где она покоится.

Подчеркнем, что отличие между системой отсчета и системой координат состоит в следующем: система отсчета всегда связана с материальными телами, тогда как система координат представляет собой математический образ, не связаный с какими-либо материальными телами. Поэтому у безмассовой частицы всегда есть только одно выделенное направление - направление ее скорости (волнового вектора).

Таким образом, для безмассовой частицы можно говорить лишь об акаксиальной симметрии относительно этого выделенного направления; иными словами, для фотона пространство обладает аксиальной симметрией. Выражение такой симметрии - сохранение проекции момента на направление импульса, которая может быть равна только ±1. Такие значения проекции момента импульса фотона на направление импульса соответствуют правовращательной и левовращательной круговой поляризацией. Значение «0» исключается поперечностью электромагнитных волн, так как нулевое значение проекции момента импульса фотона на направление его движения соответствовало бы

продольной поляризации световой волны.

Отсюда следует достаточно сильное утверждение: понятие о спине фотона условно (для фотона нельзя последовательно различать спин и орбитальный момент как составные части его полного момента), и смысл имеет лишь полный момент импульса j = 1, 2, 3, ... (нуль невозможен).

Прежде, чем перейти к описанию различных состояний фотона, кратко остановимся на вопросе о четности состояния. Понятие «четность состояния» связано с операцией изменения направления осей координат на обратное (так называемая пространственная инверсия). Обозначим соответствующий оператор Р. Его действие на волновую функцию состоит в замене х -> -х, у -> -у, z --> -z. Чтобы выяснить, каким может быть результат

действия оператора Р на некоторую волновую функцию ψ, подействуем им на ψ дважды. Тогда, по определению операции инверсии, мы должны получить ту же самую функцию (двукратное отражение осей координат ничего не меняет), т. е. Р 2 ψ = ψ. Отсюда следует, что собственными значениями оператора Р являются ±1: Рψ = ±ψ. В соответствии с этим в квантовой механике различают четные и нечетные состояния (или состояния положительной и отрицательной четности). Так например, четность состояния атома водорода равна (-1) l , т. е. s- и d-состояния являются четными, а р- и f-состояния - нечетными.

Процесс испускания или поглощения фотонов атомами должен присходить с соблюдением законов сохранения энергии, импульса и четности системы.

Теперь вернемся к состояниям фотона. Для обозначения различных состояний с определенными моментами и четностями принята следующая терминология: фотон с моментом j и четностью, равной (-1) j , называют 2 j -польным электрическим фотоном (или E-фотоном); если же у фотона с моментом j четность равна (-1) j+1 , то его называют 2 j -польным магнитным фотоном (или М-фотоном).

Иначе говоря, если обозначать состояние фотона с моментом j и четностью π как j j , то

фотоны электрического типа - это фотоны типа 1 - , 2+, 3 - , 4+,...; магнитного типа - это фотоны типа1 + , 2 - ,3 + ,4", ...

Названия «электрического» и «магнитного» типа произошли оттого, что вектор тока является нечетной пространственной функцией (он при отражении в зеркале меняет свое направление), а круговой ток (магнитный диполь) направление своего вращения при отражении в зеркале не меняет (рис. 8.1).

Возможна иная интерпретация квантового числа j: оно указывает тип симметрии, которым данное состояние обладает относительно вращения, т. е. образно говоря, дает изображение атома с разных сторон:

j = 0 - сферическая симметрия,

j = 1 - свойство симметрии вектора (диполя),

j = 2 - пространственная симметрия квадруполя,

j = 3 - пространственная симметрия октуполя и т. д.

Поэтому к слову «фотон» обычно добавляют «дипольный», «квадрупольный», «октупольный» и т. д. Поскольку структуру Е0-мультиполя (сферическая симметрия) имеет кулоновское поле точечного заряда, действие лоновского поля иногда трактуют как результат обмена промежуточным виртуальным Е0-фотоном. Таким образом на самом деле спин фотона (вернее, его момент импульса) может быть любым, а не только равным 1.

Если размер излучающей системы равен а, а ω - частота излучения, то электрическое поле квадруполя меньше поля диполя в аω/с раз (с - скорость света). Этот множитель можно представить в виде:

аω/с = (2πν/с) а = 2πа/λ. (8.1)

Поскольку мы рассматриваем излучение атомов, то в данном случае а - размер атома, λ - длина волны излучения. Мощность излучения пропорциональна квадрату электромагнитного поля, а следовательно, «скорость» потери энергии возбужденным атомом при дипольном излучении в (2πа/λ) 2 раз больше, чем при квадрупольном, и соответственно, относительная продолжительность излучения, называемая временем эюизни атома в возбужденном состоянии, будет обратно пропорциональна этой величине.

При излучении в видимом оптическом диапазоне длин волн справедлива следующая оценка:

Если обозначить время жизни атома в возбужденном состоянии через т, а

обратную ему величину - вероятность перехода атома из возбужденного

состояния - через w, то мы в результате получим

Аналогичное соотношение имеет место между магнитным и электрическим переходами одинаковой мультипольности

Оно легко обобщается на переходы с любой мультипольностью.

Соотношения (8.3) и (8.4) означают, что практически в атомах происходят лишь электрические дипольные переходы, т. е. переходы с испусканием дипольных El-фотонов (вернее, если возбужденное состояние может «высветиться» через различные переходы, среди которых есть и Е1, то именно он будет преобладающим). Поэтому часто говорят, что спин фотона равен единице, хотя - подчеркнем еще раз - спин фотона (вернее его полный момент импульса) может быть любым. В квантовой системе гораздо меньшего

размера - в ядре - мы довольно часто наблюдаем испускание квадрупольных квантов.

Правила отбора

Теперь мы можем разобраться, какие переходы в оптике возможны, а какие невозможны, и тем самым выяснить роль правил отбора при излучении (и поглощении), упоминавшихся в гл. 4. Правилами отбора полностью определяются оптические спектры атомов, т. е. то, какие переходы из высоковозбужденного состояния возможны, а значит, какие линии мы увидим в спектре испускания нагретых газов. Поскольку при дипольном излучении фотон уносит момент импульса, равный 1, то разность полных моментов импульсов атома в начальном и конечном состояниях должна удовлетворять

соотношениям:

ΔJ = ±1, 0 при J нaч ≠0 и J K0H ≠ 0, (8.5)

ΔJ = ±1 при J нaч = 0 или J K0H = 0.

Отсюда следует, что проекция J на любое направление изменяется не более, чем на единицу, т. е.

Δm j = ±1, 0. (8.6)

Необходимо добавить, что переходы J Haч = 0 ->> J K0H = 0 запрещены, поскольку в силу поперечности электромагнитных волн не может излучиться фотон с J = 0. В то же время переход с ΔJ = 0 при J Haч ≠0 означает поворот вектора J системы на некий определенный угол.

Рассмотрим теперь, какие отсюда следуют правила отбора для векторов S

и L. Изменение вектора спина S связано с переориентацией собственных маг-

магнитных моментов электронов, т. е. на классическом языке это соответствует

изменению токов в системе, что связано с излучением магнитных квантов.

Как мы показали, при оптических переходах с подавляющей вероятностью

происходит излучение только электрических дипольных фотонов, а значит,

для вектора S должно выполняться условие

Таким образом, правила отбора noJ (8.5), (8.6) и S (8.7) определяют следу-

следующие правила отбора по орбитальному квантовому числу и по его проекции:

ΔL = 0, ±1 при L Нач ≠ 0 и L K0H ≠ 0,

ΔL = ±1 при L Нач = 0 и L K0H = 0, (8.8)

Особо отметим, что переходы с ΔL = 0 невозможны для атомов, в которых

испускание света связано с изменением движения всего одного электрона,


Учебные элементы.

1. В спектре атома любого щелочного металла выделяют четыре серии: главная, резкая, диффузная и основная.

Обобщенная формула Ридберга, по которой можно рассчитать частоту линий этих серий, записывается следующим образом:

Здесь m и n - целые числа, а α и β – дробные числа, названные поправками Ридберга.

Эта формула учитывает возможность ионизации атомов других групп до состояния с одним внешним электроном (Z - номер группы).

2. Для конкретного атома (например, для лития), получим следующие четыре формулы:

Главная серия:

Резкая серия:

Диффузная серия:

Основная серия:

3. Для каждого атома имеется свой набор поправок Ридберга, которые были определены исходя из изучения энергий ионизации и длин волн головных и коротковолновых границ серий.

4. Головная линия серии. Для любой серии это спектральная линия с наибольшей длиной волны (наименьшей частотой) в данной серии. Соответствует первому разрешенному переходу из начального состояния в ближайшее возбужденное состояние.

5. Коротковолновая граница серии. Для любой серии это спектральная линия с наименьшей длиной волны (наибольшей частотой) в данной серии. Соответствует разрешенному переходу из начального состояния в возбужденное состояние с главным квантовым числом, стремящимся к ∞. Является границей между линейчатым спектром и областью сплошного спектра.

6. Энергия диссоциации численно равна работе, которую необходимо совершить, чтобы оторвать электрон от атома. Энергия перехода электрона из начального состояния в возбужденное состояние с главным квантовым числом, стремящимся к ∞, численно соответствует этой работе.

7. Потенциал ионизации. При бомбардировке исследуемых атомов электронами, которые разгоняются в электрическом поле, регистрируется разность потенциалов, при которой происходит отрыв электрона от исследуемого атома (ионизация атома). Эта разность потенциалов называется потенциалом ионизации.

8. Первый потенциал возбуждения. В опыте Франка и Герца при бомбардировке исследуемых атомов электронами, которые разгоняются в электрическом поле, регистрируется разность потенциалов, при которой наблюдается резкий провал в вольтамперной характеристике. При этом электрон в исследуемом атоме переходит из основного состояния в первое возможное возбужденное. Энергия этого перехода равна энергии электрона, разогнанного электрическим полем.

9. Тонкая структура спектров. Постоянная тонкой структуры.

При увеличении разрешающей способности спектральных приборов, было установлено, что все спектральные линии имеют тонкую структуру (они сложные). Линии главной и диффузной серии – двойные (дублеты), а линии резкой и основных серий – тройные (триплеты). Тонкая структура может быть объяснена тем, что энергетические уровни атома расщепляются. При вычислении энергии расщепления, было получено следующее соотношение: . Число получило название постоянная тонкой структуры, а E i – энергия ионизации атома.


10. Спин электрона. Квантование спина. Спиновое квантовое число.

Собственный механический момент атома и его проекция на выделенное направление:

Для объяснения расщепления спектральных линий и ряда других экспериментов (эффект Зеемана, магнитомеханические явления) значение спинового квантового числа s положили равным ½, а значение магнитного квантового числа m s ,определяющего ориентацию спина, равным ±½.


11. Векторная модель одноэлектронного атома

При таком представлении состояния электрона оказывается, что ему приписывают два механических момента (орбитальный и спиновый), которые должны складываться между собой. Для вычисления результата сложения строим векторную модель одноэлектронного атома. Необходимо напомнить студентам результаты вычисления коммутаторов операторов проекций механического момента (не коммутируют) и одной из проекций механического момента и квадрата модуля механического момента (коммутируют). Таким образом, нельзя определить точное направление вектора механического момента, а можно определить его проекцию на заданную ось (ось Z ) и его длину. А сам механический момент будет вращаться (прецессировать) вокруг этого направления.

m s =-½

L s

L s

L l

m s

L

L z
12. Спин-орбитальное взаимодействие.

При сложении орбитального и спинового механических моментов возможны две взаимные ориентации этих моментов, которые будут давать разные состояния. Энергии этих состояний будут отличаться, т.к. помимо энергии, определяемой значениями главного и орбитального квантовых чисел, необходимо учитывать энергию спин-орбитального взаимодействия. Эта энергия определяется взаимодействием спинового магнитного момента с магнитным полем, которое возникает из-за орбитального движения заряженной частицы: . Величина и знак этой энергии определяется скалярным произведением орбитального и спинового механических моментов. Как видно из рисунка, в одном случае знак будет положительный (острый угол между моментами), в другом – отрицательный (тупой угол между моментами).

13. Полный механический момент.

При сложении орбитального и спинового механических моментов получается новый механический момент (полный или внутренний), величина которого и его проекция на ось Z , записываются следующим образом:

Причем значение полного квантового числа j для одноэлектронного атома может принимать значения: l + ½ или l - ½. Значения числа m j могут принимать значения от –j до j через единицу.

Таким образом, можно объяснить расщепление энергетических уровней. Образование дублетов и триплетов можно объяснить, только рассмотрев правила отбора для спектральных переходов.
14. Правила отбора для спектральных переходов.

Это правила изменения квантовых чисел при переходе электрона из одного состояния атома в другое при поглощении или испускании фотона. Рассмотрим только однофотонные процессы.

Для главного квантового числа n нет никаких ограничений. Электрон может переходить с любого уровня n 1 на любой другой n 2 .

Для орбитального квантового числа l действует правило отбора, основанное на законе сохранения механического момента. Фотон имеет собственный механический момент равный единице ℏ. Поэтому при поглощении или излучении фотона механический момент атома должен изменяться на единицу. Отсюда правило отбора:

Для спинового квантового числа s действует строгое правило: оно не должно изменяться: .

Для полного квантового числа j установлено следующее правило отбора:

Для магнитного квантового числа m j установлено такое же правило отбора:

Таким образом, поскольку полное квантовое число j при оптических переходах может изменяться максимум тремя способами, то и тонкая структура линий для атомов щелочных металлов может быть либо дублетом, либо триплетом.

 


Читайте:



Помог Гераклу добыть яблоки в саду Гесперид, дочерей Атланта

Помог Гераклу добыть яблоки в саду Гесперид, дочерей Атланта

Многое в современном мире мире построено на образцах, данных философами, учёными и поэтами древней Греции. Культура эллинов будоражила умы...

Почему иностранцы считают русскую смекалку грозным оружием?

Почему иностранцы считают русскую смекалку грозным оружием?

Русский народ славен не только широтой души и гостеприимством, но и смекалкой – умением быстро ориентироваться в пространстве, находить остроумный...

Ошеломляющие факты о возможностях волновой генетики (2016)

Ошеломляющие факты о возможностях волновой генетики (2016)

Технологии жидкой квантовой информационной матрицы - новая прорывная технологии поли-био-технического применения, которые интенсивно развиваются в...

Герман Стерлигов. Все в село. Жизнь после миллионов: кто променял состояние на рай в шалаше Московский миллионер уехавший в деревню

Герман Стерлигов. Все в село. Жизнь после миллионов: кто променял состояние на рай в шалаше Московский миллионер уехавший в деревню

Банварлал Доши, основатель компании DR International В начале июня 2015 года имя одного из богатейших людей Индии Банварлала Доши не сходило со...

feed-image RSS